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Harmonic vibrational frequencies are computed using second-order Møller-Plesset perturbation theory (MP2)
with and without local (LMP2) and density fitting (DF) approximations. Results for a test set of 17 small and
medium size molecules (366 normal modes) are presented, and frequency scaling factors for LMP2 in
combination with two different basis sets are determined. Comparison of the MP2 and LMP2 frequencies
with experimental data reveals that the introduction of local approximations leads to a slightly better agreement
with experiment. This is attributed to the reduction of basis set superposition errors in local calculations.
Introduction of DF approximations within the LMP2 formalism leads to negligible deviations but significantly
reduces the computational cost. These facts extend the applicability of the method to larger systems with
large basis sets. As an example, the method is applied to a full DF-LMP2/cc-pVTZ frequency calculation for
testosterone (49 atoms).

1. Introduction

Calculations of harmonic vibrational frequencies have been
used in molecular spectroscopy for more than 50 years.1 Despite
the restrictions imposed by the harmonic approximation, the
calculation of harmonic frequencies and normal modes is still
the initial step in more accurate simulations of vibrational
spectra.2-4 Generally, the calculated values of harmonic vibra-
tional frequencies depend sensitively on the shape of the
potential energy surface (PES) near the equilibrium structure,
and therefore, their comparison to experimental data represents
a sensitive test for the quality of the particular electronic
structure method. Results of good accuracy can often be obtained
with density functional theory (DFT), but high-level electron
correlation methods are necessary to obtain frequencies which
agree within a few wavenumbers with experimental values.
Unfortunately, due to the steep scaling of the computational
resources with the molecular and basis set sizes, accurate
calculations for large molecules are exceedingly expensive and
often impossible.

The steep scaling with molecular size can be reduced using
local approximations as proposed by Pulay5-9 and further
developed in our10-19 group. Linear scaling of the CPU time
with molecular size has been achieved for all standard closed-
shell single reference methods,13-17 and this makes it now
possible to apply high-level methods to much larger molecules
than with conventional methods. An important question is how
much the local approximations affect the results. Previous
studies showed that local Møller-Plesset perturbation theory
(LMP2) optimized geometries are essentially identical to
conventional MP2 structures, with a tendency for LMP2 to yield
slightly longer bond lengths.20 The deviations in geometrical
parameters were almost basis set independent. LMP2 and MP2
harmonic vibrational frequencies were found to be mostly in
close agreement as well. An exception is acetylene, where the
values predicted by LMP2 are in better agreement with
experiment.21 This effect can be attributed to the reduction of
the intramolecular basis set superposition error (BSSE) in local

calculations.22,23 In the present work, we will give further
evidence that the reduction of the BSSE improves the computed
frequencies for certain modes.

The second problem, namely, the steep scaling of the
computational cost with basis set size per atom, can be reduced
by density fitting (DF) approximations. Boys and Shavitt were
probably the first who used this technique to compute intractable
three-center Slater integrals in calculations on the H3 molecule.24

Further early use was mostly in DFT calculations. Fitting of
the entire density in an auxiliary basis set25-28 leads to a
reduction fromO((NAO/Natom)4) to O((NAO/Natom)3) scaling and
much cheaper evaluation of the Coulombic operator. Feyereisen
et al. generalized the DF approach to MP2.29,30 Similar ap-
proximations were later implemented by several authors for
various methods.31-40 Particularly useful and important for these
developments was the optimization of accurate fitting basis sets
for DFT, HF (Hartree-Fock), and MP2.41-44 Recent work in
our group has demonstrated that the DF method can be
combined with local approximations,38,40,45 leading to very
efficient low-order scaling methods. The availability of analyti-
cal DF-LMP2 energy gradients45 makes it now possible to test
the effect of local DF approximations on equilibrium structures
and vibrational frequencies.

There are various sources of errors in harmonic frequency
calculations which typically cause overestimation in comparison
to the experimental frequencies. Most important are missing
correlation contributions caused by truncation of the one-electron
andN-electron basis sets. Another source of error is the overall
neglect of anharmonicity. To obtain a better agreement between
calculated and observed frequencies, scaling procedures are often
used. The simplest is to multiply the frequencies using one or
two scaling factors.46-48 These factors are derived by least-
squares fitting to experimental data and are used whenever there
is a need for a quick preliminary assignment of vibrational
spectra. Such corrections are made possible by the fact that the
overestimation of the frequencies is rather uniform, at least in
some parts of the spectra.

In the present work, we investigate the effect of local and
DF approximations on harmonic vibrational frequencies. The
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calculations are restricted to MP2 theory, but it can be expected
that similar results would be obtained for higher-order methods
if the same approximations are made. In section 3, a brief
introduction to the methods and approximations will be given.
Results for a set of benchmark molecules will be presented in
section 4.

2. Theoretical Methods and Computational Details

The methods applied in this work have been described in
detail in previous papers10,13,28,40,45and will therefore be only
briefly reviewed here. All calculations were done with a
development version of the MOLPRO49 package of ab initio
programs.

2.1. Local Correlation Methods.In local correlation methods
as originally proposed by Pulay5 and used in the present work,
the occupied orbitals (LMOs) are localized using standard
procedures as proposed by Boys50,51or Pipek and Mezey.52 The
latter method has some advantages, in particular for computing
analytical energy gradients20,45,53and is therefore employed here.
The virtual space is spanned by projected atomic orbitals
(PAOs), which are obtained from the basis functions (AOs) by
projecting out the occupied orbital space.5 Since the LMOs and
PAOs are local, it is possible to restrict the excitations to pair-
specific subspaces of PAOs (domains) and to neglect correla-
tions of distant orbital pairs. In higher correlation methods, such
as LCCSD(T), a hierarchy of approximations dependent on the
importance of electron pairs can be introduced, but in the current
work, which is restricted to LMP2, there is only one class of
pairs. The introduction of domains and the neglect of distant
pairs lead to linear scaling in LMP2.13

The domains were determined using the procedure of
Boughton and Pulay22 using a completeness criterion of 0.98.
Distant pairs were defined on the basis of the minium distance
between the atoms in the two different LMOs forming the pair.
For more details, we refer to previous work.10,13Particular care
must be taken in calculations of highly symmetric aromatic
systems such as benzene, in which localization of theπ-electrons
is not unique, that is, a parameter in localization space is
redundant. This can lead to artifical results if the molecule is
distorted in geometry optimizations or frequency calculations.
This problem can easily be avoided, however, by merging the
orbital domains which correspond to the redundant set of LMOs.
The energy and gradients are then invariant with respect to
unitary orbital transformations within the redundant set. In the
case of benzene, this leads to fullπ-domains, that is, the domains
for all threeπ-orbitals comprise all PAOs arising from carbon
basis functions. Such merging can be done automatically and
is recommended whenever two orbital domains overlap by two
or more atoms.

When computing the Hessian by finite differences of analyti-
cal gradients, as done in the present work, it is important to
make sure that the domains do not change for the different
geometry displacements, that is, that the PES is perfectly
smooth. This can be achieved by freezing the domains. In
complete analogy to DFT, where a similar problem concerns
the grid on which the functional is evaluated, we freeze the
domains in the geometry optimization once a certain accuracy
(step length smaller than 0.05a0) has been reached. Similarly,
in a Hessian calculation, the domains are determined at the
equilibrium structure and then frozen. If local DF procedures
are used (see below), this also applies to the fitting domains
used in the HF, LMP2, and coupled-perturbed HF (CPHF).

2.2. Density Fitting. Despite linear scaling, the bottleneck
of the LMP2 method is the evaluation and transformation of

the two-electron repulsion integrals. Since this step scales as
O((NAO/Natom)4), this problem is particularly severe if large basis
sets are used. The evaluation and transformation of the integrals
can be much sped up using DF approximations, as first used in
the context of MP2 by Vahtras, Almlo¨f, and Feyereisen.29,30 In
conventional MP2 with canonical orbitals, this does not reduce
theO(N5) scaling with molecular size but lowers the pre-factor
and the scaling with basis set size per atom from quartic to
cubic. In the LMP2 case, the use of domains and the neglect of
distant pairs immediately lead toO(N2) scaling with molecular
size. Furthermore, the local character of the excitations allows
for the use of domains in the fitting basis, which leads to linear
(O(N)) scaling.38 Similar approximations can be made in the
preceding DF-HF calculations40 and in the calculation of
analytical energy gradients.45 It has been shown in our previous
work that these approximations lead to dramatic savings but
hardly affect computed energy differences and optimized
structures. In the present paper, we will investigate whether the
same applies to computed vibrational frequencies. It will in fact
be demonstrated that the errors caused by neglecting distant
pairs and using (local) DF approximations in the HF and LMP2
are negligible.

In all density fitting calculations reported in this paper (both
for the cc-pVDZ and cc-pVTZ orbital basis sets), we used the
cc-pVTZ/JKFIT and cc-pVTZ/MP2FIT fitting basis sets of
Weigend and Ha¨ttig et al.42-44 in the DF-HF and DF-LMP2
calculations, respectively.

2.3. Parallelization.In the current work, the Hessian has been
computed using finite differences of analytical gradients, since
the implementation of analytical second derivatives for DF-
LMP2 would be very complicated. Also, the savings would
probably not be very significant, since for all 3N degrees of
freedom the Fock matrix derivatives would have to be computed
and stored (N is the number of atoms). Furthermore, 3N sets of
CPHF and coupled-perturbed localization (CPL) equations
would have to be solved. These steps would probably dominate
as much as the 6N HF and CPHF calculations in finite difference
calculations, and this cannot be much improved by local
approximations.

Another advantage of using finite differences is the fact that
many basically independent calculations are needed. This makes
it easily possible to implement an “embarrassingly parallel”
algorithm, in which each displacement can be computed on a
different processor.54 In our implementation within MOLPRO,49

a dynamical task scheduling algorithm is used and no synchro-
nization is necessary before the Hessian is completed. The
energies and gradients are stored in global arrays,55 which can
be accessed independently (one sided) from each processor.
Whenever processor 0 gets a new task, the results of all finished
tasks are read from the global array and written to a file, which
makes restarts possible. Data integrity in the GA is ensured using
fences and locks, which prevent access to the GA for the other
processors while a processor reads or writes data. In principle,
if a sufficient number of processors is available on a compute
cluster, a speedup of 6N is possible. This method has been used
in the present work to compute the harmonic vibrational
frequencies for a molecule with 49 atoms at the DF-LMP2/cc-
pVTZ level.

2.4. Frequency Scaling Procedure.Due to the neglect of
anharmonicity, a direct comparison of computed frequencies
and experimental frequencies leads to large errors (in particular
for the high-frequency CH stretching modes) and is therefore
meaningless. However, as pointed out in the Introduction, the
anharmonicity effects are to a good approximation proportional
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to the frequency, and therefore, the agreement between theory
and experiment can be much improved by scaling procedures.
Scaling was carried out using a least-squares procedure by
minimizing the residuals48

whereνi
calc is theith calculated harmonic frequency andνi

obs is
the corresponding experimental fundamental.λ is the scaling
factor which is optimized to minimize∆. Since the magnitude
of the errors of harmonic vibrational frequencies often depends
on the spectral region, we determined three different sets of
scaling factors. First, we computed a single scaling factor for
the complete spectra. Second, we divided the spectra into two
regions (ω1 < 1800 cm-1 e ω2) and finally into three regions
(ω1 < 1000 cm-1 e ω2 < 1800 cm-1 e ω3). In the latter, two
cases different scaling factors for each region were used. In each
case, the root-mean-square (rms) error, the maximum absolute
error (MAD), and the total sum of squares of deviations (SSD)
were determined in order to compare the scalability of the results
for the different electronic structure methods (MP2, LMP2, and
DF-LMP2) used in this work.

3. Results and Discussion

3.1. Benchmark Calculations.To evaluate and compare the
accuracy of the computed harmonic vibrational frequencies for
various methods, the following test set of 17 molecules was
used: acetone (C2V), azetidine (Cs), benzaldehyde (Cs), butatriene
(D2h), chloroethylene (Cs), ethylene (D2h), fluorobenzene (C2V),
formaldehyde (C2V), formic acid (Cs), furan (C2V), furazane (C2V),
methanol (Cs), phenol (Cs), pyridine (C2V), pyrrol (C2V), tropone
(C2V), and water (C2V). The total number of investigated normal
modes was 366. Symmetry was used to reduce the computational
effort in the canonical MP2 calculations, while all LMP2
calculations had to be performed inC1 symmetry, since the
LMOs are not symmetry adapted.

Harmonic vibrational frequencies were calculated at the MP2
and LMP2 levels with and without the DF in combination with
the cc-pVDZ and cc-pVTZ basis sets.56 All geometries were
reoptimized for each basis set and method. The calculated
harmonic frequencies were scaled as described in section 3.4.
The comparison of calculated and experimental frequencies was

performed in a careful fashion by checking the particular
symmetry species and intensities in order to ensure correct
assignments.

The scaling factors, along with the rms, SSD, and MAE
values for all modes of the test set, are presented in Table 1. It
is clear that a comparison of these errors for different methods
depends on the assumption that the uniform scaling procedure
is valid. Previous work has shown, however, that more accurate
methods usually lead to smaller errors of the scaled frequen-
cies;48 similarly, basis set improvements usually reduce the
errors. Therefore, we assume here that such comparisons are
justified. More pragmatically, one could argue that the method
is most useful in practice which leads to smallest errors after
scaling, even though this does not necessarily mean that the
same method would give also the smallest errors if anharmonic
frequencies would be computed and compared directly to
experimental data.

For both basis sets used, the scaled LMP2 frequencies are in
slightly better agreement with the experimental values than the

TABLE 1: Scaling Factors and Error Analysis for the Test
Set of Molecules

cc-pVDZ cc-pVTZ

MP2 LMP2 DF-LMP2 MP2 LMP2 DF-LMP2

λa 0.954 0.955 0.955 0.955 0.956 0.956
SSD/cm-2 446749 408093 408497 338198 307787 308415
rms/cm-1 35.7 34.1 34.1 31.0 29.6 29.6
MAD/cm-1 109.6 112.0 111.8 109.6 110.6 110.7
λ1

b 0.976 0.976 0.976 0.974 0.974 0.974
λ2

b 0.946 0.947 0.947 0.947 0.949 0.949
SSD/cm-2 216888 197228 197949 160035 157133 157474
rms/cm-1 24.9 23.7 23.7 21.4 21.2 21.2
MAD/cm-1 114.5 116.8 117.8 116.3 117.3 117.4
λ1

c 0.990 0.988 0.988 0.981 0.977 0.977
λ2

c 0.973 0.974 0.973 0.972 0.973 0.973
λ3

c 0.946 0.947 0.947 0.947 0.949 0.949
SSD/cm-2 201858 185995 186330 156081 155946 156248
rms/cm-1 24.0 23.0 23.0 21.1 21.1 21.1
MAD/cm-1 110.1 113.9 113.3 113.6 115.9 116.0

a Complete spectra.b Spectra are divided in two regions (ω1 < 1800
cm-1 e ω2.) c Spectra are divided in three regions (ω1 < 1000 cm-1

e ω2 < 1800 cm-1 e ω3.)

Figure 1. Normal modes of phenol calculated at the MP2/cc-pVTZ
level.

Figure 2. Differences between LMP2 and DF-LMP2 frequencies
employing the (a) cc-pVDZ and (b) cc-pVTZ basis sets.

∆ ) ∑
i

(λνi
calc - νi

obs)2 (1)
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MP2 ones. The difference is more pronounced for the cc-pVDZ
basis set than for the larger cc-pVTZ one, in particular for the
SSD values. Possibly, this is due to the reduction of BSSE
effects in the LMP2 method.22,23 More evidence for this
assumption will be given in the next section. As one would
anticipate, overall, the errors are substantially smaller for the
cc-pVTZ basis than for the cc-pVDZ basis.

Errors introduced by the use of the DF approximation are
negligible. As can be seen in Figure 2, the maximum deviations
between the LMP2 and DF-LMP2 frequencies are below 2 cm-1

for cc-pVDZ and below 1 cm-1 for cc-pVTZ. The average
deviations amount to-0.14 ( 0.28 and-0.06 ( 0.15 cm-1

for cc-pVDZ and cc-pVTZ, respectively. Thus, the DF ap-
proximation can be used with confidence.

3.2. Case of Monosubstituted Benzenes.One striking fact
arises in the case of all monosubstituted benzene molecules in
the set (phenol, benzaldehyde, and fluorobenzene). For some
frequencies that belong to out-of-plane normal modes, the
differences between the MP2 and LMP2 results were quite
significant and much larger than for all other modes. For these
modes, the LMP2 results are in much better agreement with
the experimental values than the MP2 ones.

As an example, we consider the results for phenol, which
are presented in Table 2. In this case, accurate assignments of
the experimental bands are available.57 The calculated values
in Table 2 are not scaled and should therefore be larger than
the experimental ones by about 5%. However, at the MP2 level,
this is not the case for theν20, ν21, ν25, andν26 modes. As shown
in Figure 1, these modes correspond to out-of-plane (a′′) CH
vibrations. The MP2 values are substantially too small, even at
the cc-pVTZ level; the LMP2 values are larger and in better

agreement with experiment (taking into account the anharmo-
nicity correction). This effect, which is most pronounced for
theν26 mode, is attributed to intramolecular BSSEs, which are
expected to be smaller in LMP2 than in MP2. The BSSE leads
to an artifical lowering of the energy if the planar symmetry is
disturbed and therefore results in frequencies that are too low.
Similar findings apply to the other monosubstituted benzenes.
It is mainly the reduction of the BSSE and the resulting better
basis set convergence in LMP2 which leads to the significantly
lower SSD values for the LMP2/cc-pVDZ method.

3.3. DF-LMP2 Frequency Calculation for Testosterone.
The neglect of distant pairs and the use of local fitting
approximations can significantly reduce the computational effort
for large molecules. These truncations come into effect only
for rather large systems and do not affect the results presented
in the previous sections. To investigate the impact of these
approximations, we applied the DF-LMP2 method to testoster-
one, using the cc-pVTZ basis set. This molecule has 49 atoms
(see Figure 3), leading to a total of 141 normal modes. The
number of contracted basis functions is 1022, and all 116
valence electrons were correlated. The parallel implementation
described in section 3.3 was used for these calculations, using
6-8 processors.

To study the effect of neglecting distant pairs, we performed
three different calculations: one withRv ) 15 a0 (which is the
default in MOLPRO), one withRv ) 12 a0, and one withRv )
6 a0, whereRv is the distance criterion to omit distant pairs.
Furthermore, a calculation (Rv ) 15 a0) with local fitting
employed in the DF-HF, DF-LMP2, and CPHF steps was
performed. All computed frequencies are available as Supporting
Information. Correlation energy contributions for pairs withR
> 15 are in theµH range, and therefore, the calculation forRv

) 15 a0 should yield virtually identical results as a full
calculation.

The rms and MAD values of the deviations from the default
calculation (Rv ) 15, no local fitting) are presented in Table 3.
It is found that truncation the pair list atRv ) 12a0 has virtually
no effect. If all pairs for distances greater than 6a0 are neglected,
then the maximum error remains below 5 cm-1, even though
more than half of the orbital pairs are neglected. Somewhat
larger are errors caused by local fitting, as seen in the last
column. As discussed in ref 40, this approximation has some
effect on the optimized HF orbitals, which in turn affects the

TABLE 2: Experimental and Calculated (unscaled)
Frequencies for Phenol (cm-1)

cc-pVDZ cc-pVTZ

sym expt57 MP2 LMP2 DF-LMP2 MP2 LMP2 DF-LMP2

ν1 a′ 3655 3831.2 3832.5 3832.6 3840.6 3841.0 3841.2
ν2 a′ 3074 3249.9 3244.5 3244.9 3242.6 3234.5 3234.7
ν3 a′ 3061 3243.1 3238.0 3238.4 3235.8 3228.4 3228.6
ν4 a′ 3052 3229.2 3224.3 3224.7 3222.2 3215.6 3215.7
ν5 a′ 3046 3220.0 3215.8 3216.1 3212.8 3207.3 3207.5
ν6 a′ 3021 3199.5 3196.6 3197.0 3195.0 3189.5 3189.8
ν7 a′ 1609 1672.2 1669.3 1669.6 1660.8 1657.9 1658.1
ν8 a′ 1604 1656.5 1653.3 1653.7 1648.1 1645.6 1645.8
ν9 a′ 1501 1533.7 1532.2 1532.4 1531.9 1532.0 1532.1

ν10 a′ 1472 1499.3 1498.7 1498.9 1498.9 1499.6 1499.7
ν11 a′ 1361 1482.9 1482.2 1483.5 1469.6 1466.8 1467.5
ν12 a′ 1344 1353.5 1358.9 1358.9 1361.5 1367.8 1367.8
ν13 a′ 1261 1307.2 1302.9 1303.0 1296.4 1293.2 1293.1
ν14 a′ 1197 1213.4 1217.5 1217.5 1202.5 1204.7 1204.7
ν15 a′ 1176 1181.9 1182.8 1182.9 1188.8 1189.1 1189.2
ν16 a′ 1150 1167.0 1168.1 1168.3 1174.2 1174.6 1174.7
ν17 a′ 1070 1090.2 1091.2 1091.4 1093.4 1093.6 1093.7
ν18 a′ 1026 1045.0 1044.6 1044.8 1045.5 1045.3 1045.4
ν19 a′ 999 1008.8 1012.7 1012.4 1016.5 1019.9 1019.8
ν20 a′′ 973 947.2 963.0 962.9 959.4 992.2 992.2
ν21 a′′ 956 937.0 944.1 944.0 947.5 968.2 968.2
ν22 a′′ 881 872.4 878.4 878.2 885.2 900.3 900.3
ν23 a′′ 823 823.4 821.0 820.9 827.7 832.4 832.4
ν24 a′ 810 826.9 826.5 826.5 827.2 826.5 826.4
ν25 a′′ 752 747.1 750.4 750.1 757.7 766.0 766.0
ν26 a′′ 687 632.7 674.0 673.8 678.7 700.7 700.6
ν27 a′ 618 618.9 620.3 620.2 620.7 621.8 621.7
ν28 a′ 526 525.7 526.4 526.4 528.0 528.5 528.4
ν29 a′′ 503 505.0 510.4 510.3 512.3 515.0 515.0
ν30 a′′ 420 409.9 412.6 412.5 415.6 419.5 419.5
ν31 a′ 410 399.4 402.0 402.0 402.2 402.5 402.5
ν32 a′′ 310 333.8 342.5 342.1 331.0 331.5 331.2
ν33 a′′ 242 228.9 229.9 229.8 229.5 230.6 230.6

Figure 3. Testosterone.

TABLE 3: Effect of Neglecting Distant Pairs and of
Applying Local Fitting Approximations in DF-LMP2
Calculations for Testosteronea

Rv ) 15 Rv ) 12 Rv ) 6 Rv ) 15c

number of pairsa 1633 1456 822 1633
rmsb 0.0 0.0 3.9 5.6
MAD b 0.0 0.4 4.8 13.0

a The total number of pairs forRv ) ∞ is 1711.b Average and
maximum deviations from theRv ) 15 calculation in cm-1. c Using
local fitting in DF-HF, DF-CPHF, and the DF-LMP2 gradient.45
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gradients and frequencies. The errors could be reduced by
increasing the fitting domains, but due to the high cost of these
calculations, it was not possible in this work to study this
systematically.

It should finally be noted that the computational cost of the
LMP2 gradient and frequency calculations is strongly dominated
by the Fock matrix evaluations in the HF and CPHF steps. These
parts are not affected by the number of correlated electron pairs,
and therefore, the neglect of distant pairs saves only 14% of
the CPU time in the present case. The local fitting has a
somewhat larger effect and saves about 40% of the time, but
again, the molecular size is not large enough to make the saving
really impressive. With local fitting and the use of rather strict
convergence and screening thresholds, the calculation for one
displacement took about 8 h of CPUtime on an opteron 2.4
GHz processor.

4. Conclusions

Harmonic vibrational frequencies have been computed for a
set of 17 molecules using MP2, LMP2, and DF-LMP2 with
double and triple-ú basis sets. To account for anharmonicity
effects, the frequencies were scaled with factors determined by
least-squares fits to experimental data. The agreement of the
scaled results with experiment was found to be better for LMP2
than for MP2, in particular for the smaller basis set. This was
traced to be mainly due to some out-of plane vibrations in
monosubstituted benzenes. It was found that the MP2 frequen-
cies of such vibrations are substantially too low and rather
strongly basis set dependent. The corresponding LMP2 frequen-
cies are larger and thus in better agreement with experiment.
Most likely, this is due to the reduction of BSSEs in the LMP2.
The BSSE leads to a flattening of the out-of-plane bending
potentials and thus to a lowering of the frequencies of such
modes.

DF approximations used in the HF and LMP2 have only a
negligible effect on the computed frequencies. Thus, such
approximations, which strongly reduce the computational effort,
in particular for large basis sets, can be trustfully used.

Finally, the DF-LMP2 method was used to compute the
vibrational frequencies of testosterone using the cc-pVTZ basis
set. It was found that the neglect of distant pairs in the LMP2
hardly affects the results, even if a rather small cutoff criterion
of 6 a0 is used. The neglect of distant pairs reduces the
computational effort for the LMP2, but unfortunately, the total
CPU time is strongly dominated by the Fock matrix evaluations
in the HF and CPHF calculations, so that in the current case
the overall time was not much reduced. Thus, further improve-
ments in fast Fock matrix evaluation are most important in order
to make the method applicable to even larger molecules.
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